Как показывает проведенные исследования по математическому моделированию, оно вступает в принципиально важный этап своего развития. Без владения информационной технологии нельзя думать о решении все более укрупняющихся и все более разнообразных проблем, стоящих перед техникой и технологии.

            На первом этапе моделирования выбирается «эквивалент» объекта, отражающий в математической форме важнейшие его свойства-законы, которым они подчиняются. Второй этап заключается в выборе алгоритма для реализации модели на компьютере. Модель представляется в форме удобной для применения численных методов, определяется последовательность вычислительных и логических операций, которые нужно произвести, чтобы найти искомые величины с заданной точностью. На третьем этапе создаются программы, переводящие модель и алгоритм  на доступный компьютеру язык К ним также предъявляется требования экономичности и адекватности.

            Наиболее распространенный метод построения моделей состоит в применение фундаментальных законов к конкретной ситуации. Эти законы общепризнанны, многократно подтверждены опытом, служат основой множества научно-технических достижений. При этом на первый план выдвигаются вопросы, связанные с тем, какой закон следует применять в данном случае и как это делать. К таким законам можно отнести закон сохранение энергии, сохранение материи, сохранение импульса. Еще один подход к построению моделей, по свей широте и универсальности сопоставимый с возможностями, даваемыми фундаментальными законами, состоит в применении так называемых вариационных принципов механики. Они представляют собой весьма общие утверждения о рассматриваемом объекте и гласят, что из всех возможных вариантов его поведения выбираются лишь те, которые удовлетворяют определенному условию.

            Рассмотрим процесс составления математической модели для механической системы      с гибкими нитями и тканями. К такой механической системе можно отнести, например все машины текстильного производства. В частности в ткацком станке имеются две механические системы с нитями:

  • система основных нитей с тканью и взаимодействующими жесткими звеньями;
  • система уточной нити с взаимодействующими звеньями.

Такие же механические системы существует в прядильных  и трикотажных машинах.

            Механические системы с тканью в отделочных машинах текстильного производства весьма разнообразны и многочисленны. Они представляют собой линии проводки ткани с взаимодействующими с ней звеньями.

            Для построения математической модели таких механических систем необходимо записать систему дифференциальных уравнений движения нитей и ткани на отдельных участках в контакте с деталями машин. К этой общей системе дифференциальных уравнений необходимо присоединить уравнения стыковки. Решая аналитически или численно общую систему дифференциальных уравнений движения механической системы при заданных начальных и граничных условиях  можно найти соответствующие параметры состояния нитей и ткани. При этом из общей системы уравнений исключается уравнения движения жестких звеньев, которые в данный период цикла не взаимодействуют с нитями и тканью. Поставленная задача является весьма сложной и составляет большую тему исследования. В данной работе остановимся на рассмотрение частных задач.

            Для аналитического исследования механических систем с реальными нитями или тканью необходимо иметь такие механико-математические модели, которые отражали бы основные свойства материала реальных нитей и ткани, геометрические и силовые условия, в которых они находятся, а также упругие, вязкие, пластические деформации растяжения, изгиба и кручения. Границы применимости модели устанавливают сравнением экспериментальных данных и соответствующих данных аналитического расчета.

            Колебательные свойства многих физических систем, например, колебания балок, пластинок, оболочек, гибких стержней и в частности различные элементы рассматриваемой системы, описывается одной и той же математической моделью [1] – дифференциальным уравнением второго порядка в частных производных

            При использовании метода разделения переменных можно воспользоваться упрощенной математической моделью [2]-обыкновенным дифференциальным уравнением второго порядка

                                                                 (2)

            При ряде допущений (линейность восстанавливающей силы, отсутствие возмущающей силы, определенное соотношение между параметрами  a,b, c). Можно воспользоваться упрощенной математической моделью [3]- формулой, с помощью которой в явном виде записано решение менее сложного дифференциального уравнения.

                                      (3)

            Математическая модель (3) является существенно более ограниченной, чем (1) и (2), и справедлива при более жестких предположениях.

            В общем случае решение немногих дифференциальных уравнений частных производных вида (1) удается получить аналитически. Поэтому широкое распространение получили численные методы решения уравнений в частных производных.

            Рассмотрим решение (1) в Mathcad. Функция pdesolve в Mathcadе позволяет решать дифференциальные уравнения и системы. В любых гиперболических уравнениях присутствует вторая производная по времени t. Поэтому, чтобы решить гиперболические уравнение, необходимо преобразовать его в систему дифференциальных уравнений в частных производных, введя дополнительную неизвестную функцию  . В частности рассмотрим продольное колебания нити под действием периодической нагрузки. В этом случае задача сводится к решению систем уравнений в частных производных:

;

            Полученную систему будем решать с помощью блока Given-Pdesolve. Ниже приводится решение системы уравнений функцией pdesolve:

            При этом первым параметром в функции pdesolve будет массив имен функций, в нашем случае . Функция pdesolve вернет вектор функцию решения системы. Как показывает анализ полученных численных результатов решения поставленной задачи, найденные посредством явной разностной схемы и функции pdesolve, практически совпадают.

            В заключение коротко остановимся на оценке адекватности модели. Оценка адекватности модели предполагает в качестве обязательного этапа проведения специальных численных экспериментов, результаты которых априорно известны. Для проверки правильности модели могут использоваться уже известные экспериментальные зависимости

ОСТАВЬТЕ ОТВЕТ

Please enter your comment!
Please enter your name here